If it's not what You are looking for type in the equation solver your own equation and let us solve it.
D( x )
x = 0
x^2 = 0
x = 0
x = 0
x^2 = 0
x^2 = 0
1*x^2 = 0 // : 1
x^2 = 0
x = 0
x in (-oo:0) U (0:+oo)
7-(1/x)-(3/(x^2)) = 0
7-x^-1-3*x^-2 = 0
t_1 = x^-1
7-3*t_1^2-1*t_1^1 = 0
7-3*t_1^2-t_1 = 0
DELTA = (-1)^2-(-3*4*7)
DELTA = 85
DELTA > 0
t_1 = (85^(1/2)+1)/(-3*2) or t_1 = (1-85^(1/2))/(-3*2)
t_1 = (85^(1/2)+1)/(-6) or t_1 = (1-85^(1/2))/(-6)
t_1 = (85^(1/2)+1)/(-6)
x^-1-((85^(1/2)+1)/(-6)) = 0
1*x^-1 = (85^(1/2)+1)/(-6) // : 1
x^-1 = (85^(1/2)+1)/(-6)
-1 < 0
1/(x^1) = (85^(1/2)+1)/(-6) // * x^1
1 = ((85^(1/2)+1)/(-6))*x^1 // : (85^(1/2)+1)/(-6)
-6*(85^(1/2)+1)^-1 = x^1
x = -6*(85^(1/2)+1)^-1
t_1 = (1-85^(1/2))/(-6)
x^-1-((1-85^(1/2))/(-6)) = 0
1*x^-1 = (1-85^(1/2))/(-6) // : 1
x^-1 = (1-85^(1/2))/(-6)
-1 < 0
1/(x^1) = (1-85^(1/2))/(-6) // * x^1
1 = ((1-85^(1/2))/(-6))*x^1 // : (1-85^(1/2))/(-6)
-6*(1-85^(1/2))^-1 = x^1
x = -6*(1-85^(1/2))^-1
x in { -6*(85^(1/2)+1)^-1, -6*(1-85^(1/2))^-1 }
| 2e+5e=e-2 | | 3t^2-32t-96=0 | | 193=5-u | | (x-4)5/2=243 | | (25b-2)-8(3b+2)=-6 | | X^2=2(x^2-8) | | f(1)=x^3-6x^2+11x-6 | | 3/4*5/6= | | 3t^2-32t+96=0 | | (24b-2)-8(3b+2)=-6 | | f(1)=x^3-4x^2-x+4 | | 32-2x=7-7x | | 7-3c=22(x+1) | | a=lx | | -0.25x+1.3=-0.55x-0.2 | | (x-12)squared=16 | | 6y=-3x-18 | | 2x+2(5x-11)=122 | | 8x-4y=68 | | 6x+9=39-2x | | y+7=5(x+10) | | 20=.5x | | x^4-2x-15=0 | | 20=1.5x | | 6y^3-3y^2-6y+1=0 | | 5p-7=3(4-p) | | 6+5x=10+x | | (-3/5b) | | 8x^2+29x+6=0 | | 10x+10=6x-2 | | x^2+8x-144=0 | | (9x^8)^1/2 |